Extensions 1→N→G→Q→1 with N=C22 and Q=C2×Dic5

Direct product G=N×Q with N=C22 and Q=C2×Dic5
dρLabelID
C23×Dic5160C2^3xDic5160,226

Semidirect products G=N:Q with N=C22 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C221(C2×Dic5) = D4×Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C2280C2^2:1(C2xDic5)160,155
C222(C2×Dic5) = C2×C23.D5φ: C2×Dic5/C2×C10C2 ⊆ Aut C2280C2^2:2(C2xDic5)160,173

Non-split extensions G=N.Q with N=C22 and Q=C2×Dic5
extensionφ:Q→Aut NdρLabelID
C22.1(C2×Dic5) = D4.Dic5φ: C2×Dic5/Dic5C2 ⊆ Aut C22804C2^2.1(C2xDic5)160,169
C22.2(C2×Dic5) = C20.D4φ: C2×Dic5/C2×C10C2 ⊆ Aut C22404C2^2.2(C2xDic5)160,40
C22.3(C2×Dic5) = C23⋊Dic5φ: C2×Dic5/C2×C10C2 ⊆ Aut C22404C2^2.3(C2xDic5)160,41
C22.4(C2×Dic5) = C20.10D4φ: C2×Dic5/C2×C10C2 ⊆ Aut C22804C2^2.4(C2xDic5)160,43
C22.5(C2×Dic5) = C23.21D10φ: C2×Dic5/C2×C10C2 ⊆ Aut C2280C2^2.5(C2xDic5)160,147
C22.6(C2×Dic5) = C4×C52C8central extension (φ=1)160C2^2.6(C2xDic5)160,9
C22.7(C2×Dic5) = C42.D5central extension (φ=1)160C2^2.7(C2xDic5)160,10
C22.8(C2×Dic5) = C203C8central extension (φ=1)160C2^2.8(C2xDic5)160,11
C22.9(C2×Dic5) = C20.55D4central extension (φ=1)80C2^2.9(C2xDic5)160,37
C22.10(C2×Dic5) = C10.10C42central extension (φ=1)160C2^2.10(C2xDic5)160,38
C22.11(C2×Dic5) = C22×C52C8central extension (φ=1)160C2^2.11(C2xDic5)160,141
C22.12(C2×Dic5) = C2×C4.Dic5central extension (φ=1)80C2^2.12(C2xDic5)160,142
C22.13(C2×Dic5) = C2×C4×Dic5central extension (φ=1)160C2^2.13(C2xDic5)160,143
C22.14(C2×Dic5) = C2×C4⋊Dic5central extension (φ=1)160C2^2.14(C2xDic5)160,146

׿
×
𝔽